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Understanding Microbial Count Distribu�ons: 
Choosing the Right Model for Control Charts 

 

1. INTRODUCTION 

Microbial counts are cri�cal indicators in pharmaceu�cal environments, cleanrooms, and other 

controlled se�ngs. 

Microbial counts are an example of count data, meaning they represent the number of 

occurrences of an event within a fixed unit of measurement (e.g., �me, area, or volume). A count 

variable is a discrete variable that can only take non-nega�ve integer values (0, 1, 2, ...), making 

it fundamentally different from con�nuous data. Importantly, microbiological data are 

con�nuous in the sense that they accumulate over �me and across different condi�ons, but 

they remain fundamentally count-based, discrete variables. This dis�nc�on is crucial because 

the sta�s�cal models and control charts used for analysis must be appropriate for discrete 

count data, rather than con�nuous measurements. 

In sta�s�cal modeling, count data are o�en assumed to follow a Poisson distribu�on, where the 
variance equals the mean. 

Mathema�cally, a discrete random variable, X, has the Poisson distribu�on if its probability 

func�on is: 
 

  = (𝑛𝑛𝑛𝑛)𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝜆𝜆𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝜆𝜆       𝑥𝑥 = 0,1,2, … 

 𝑝𝑝(𝑥𝑥) 
 = 0    elsewhere 

and its variance is equal to the mean and the parameter λ: 

𝜎𝜎2 = 𝜇𝜇 = 𝜆𝜆 

Because of this there are «different» Poisson Distribu�ons for different values of the mean, µ. 

Introduced by Siméon Denis Poisson in a book he wrote regarding the applica�on of probability 

theory to lawsuits (1837), the Poisson distribu�on is commonly used to model the number of 

occurrences of « rare events » within a fixed interval of �me, volume, or space such as: 

• number of misprints on a page (or number of pages) in a book, 

• number of people in a community reaching the age of 100, 

• number of wrong phone numbers dialed in a day, 

• number of equipment failures occurring in a given �me period, etc. 
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This model assumes that events occur independently, the average rate of occurrence is constant, 

and the probability of mul�ple events occurring simultaneously is negligible. These condi�ons 

align well with microbial contamina�on scenarios in controlled environments, where counts are 

typically low (e.g., 0–3 CFU) and measured over fixed intervals (e.g., per m³ of air or per 100 mL 

of water). 

For prac�cal purposes, a dataset of 100 simulated microbial counts was generated using a Poisson 

distribu�on with a mean of λ ≈ 2. The simulated values are representa�ve of possible microbial 

counts from air or water samples and are summarized in Table 1 below. 

 

Table 1 
Sample ID Count Sample ID Count Sample ID Count Sample ID Count Sample ID Count 

1 4 21 4 41 1 61 2 81 2 
2 4 22 1 42 2 62 5 82 1 
3 1 23 6 43 0 63 3 83 1 
4 3 24 4 44 5 64 2 84 2 
5 2 25 0 45 2 65 3 85 3 
6 2 26 2 46 5 66 1 86 2 
7 3 27 1 47 4 67 1 87 1 
8 0 28 4 48 2 68 3 88 0 
9 2 29 2 49 5 69 3 89 0 

10 3 30 3 50 2 70 1 90 1 
11 2 31 3 51 1 71 0 91 2 
12 3 32 3 52 1 72 1 92 0 
13 4 33 1 53 1 73 1 93 1 
14 1 34 3 54 3 74 2 94 4 
15 2 35 0 55 0 75 1 95 4 
16 4 36 3 56 3 76 3 96 3 
17 5 37 0 57 3 77 0 97 1 
18 0 38 1 58 1 78 1 98 2 
19 2 39 4 59 1 79 2 99 3 
20 2 40 2 60 2 80 0 100 2 

 
For the data set in Table 1:  

• Mean = 2.1 

• Variance  = 2.0 

• Overdispersion Factor = 0.97 

• Percentage of zeros = 13% 
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The Overdispersion Factor is a numerical value that quan�fies how much extra variability is 

present in a dataset compared to what we would expect under a Poisson distribu�on. It is defined 

as: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  

where: 

• Variance measures the spread of the data. 

• Mean is the expected count of occurrences. 

In Poisson distribu�on, the mean and variance are equal: 

Variance=Mean 

which means the Overdispersion Factor should be close to 1. 

Since, in this case, the Overdispersion Factor = 0.97 ≈ 1, the Poisson model is appropriate. 

The Overdispersion Factor has important prac�cal consequences. In fact, if there is overdispersion 

(i.e., Overdispersion Factor > 1), the use of a Poisson model can lead to incorrect conclusions (for 

example, too many false alarms in control charts). Furthermore, tradi�onal control charts assume 
Poisson-distributed data. 

Graphically, the data in Table 1 are presented as shown in Figure 1 below. 

All graphs in this ar�cle were generated using Minitab 22.1 and R. The R scripts used for the 
analyses and control charts are available in my GitHub repository at 

htps://github.com/rbonfichi/microbial-counts. 

  

https://github.com/rbonfichi/microbial-counts
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 Figure 1 

 
 
As shown in Figure 2, using the Poisson goodness-of-fit test, it is possible to determine that the 
data in Table 1 follows a Poisson distribu�on. 

 Figure 2 

 
 

As men�oned above, iden�fying the most correct distribu�on to represent the experimental data 

is fundamental for choosing the most suitable control chart to monitor the process from which 

they come. 

If the data follows a Poisson distribu�on, the appropriate control chart to use is the c-chart (count 

chart) as it is designed for count data (e.g., microbial counts, defect counts). 
  



Page 5 of 25 
 

 

The c- chart should be used to monitor the number of defects when each item can have mul�ple 

defects, and the so-called “subgroups” are all the same size. A typical example is the monitoring 

of the total number of CFU on an agar plate where 10 mL of sample are always plated. 

The control limits are based on the Poisson mean (λ) 

Since Poisson-distributed data has variance equal to its mean, the standard devia�on is: 

𝜎𝜎𝑐𝑐  =  √λ 

Following the classical: 

UCL = μ+3σ, LCL = μ−3σ 

control limits for a c-chart are calculated as:  

𝑈𝑈𝑈𝑈𝑈𝑈 =  𝑐𝑐̅ + 3√𝑐𝑐 ̅

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑐𝑐̅ − 3√𝑐𝑐̅ 
 
where: 

 𝑐𝑐̅ = average count per sample (Poisson mean λ). 

 UCL = Upper Control Limit 
 LCL = Lower Control Limit (set to zero if nega�ve, since counts cannot be nega�ve). 

 

In the case of data in Table 1 where we have microbial counts with a mean count of λ = 2.1: 

 𝜎𝜎𝑐𝑐  =  √λ  = √2.1  = 1.45 

 UCL = 2.1 + 3(1.45) = 6.45 

 LCL = 2.1 - 3(1.45) = -2.25 = 0 

So, the parameters characterizing the control chart are, in this case: 

UCL= 6.45, LCL=0, 𝑐𝑐̅ =2.1 
 

and the corresponding control chart is shown in Figure 3 below. 

  



Page 6 of 25 
 

 
 Figure 3 

 
 
For many reasons such as: 

• contamina�on accumula�on because of ineffec�ve cleaning, 

• temperature and environmental changes (e.g., warmer condi�ons during later shi�s) 
• sampling or equipment contamina�on (e.g., residual contamina�on from previous 

samplings) 

• operator influence (e.g., differences in handling or sampling procedures across shi�s) 

it is possible that microbial counts may gradually increase showing a growth trend over �me. 

Let's consider, for example, the case of monitoring a given sampling point conducted over the 

course of a month and, every day, at each work shi�. Figure 4 shows how a c-control chart could, 
for example, show an upwards shi�. 
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 Figure 4 

 
 

However, in prac�ce, microbial counts o�en deviate from the Poisson assump�ons. 

Overdispersion—where the variance exceeds the mean—is frequently observed due to 

environmental variability, sampling issues, and other factors. Addi�onally, many cleanroom 
datasets contain excess zeros, requiring the considera�on of zero-inflated models. 

Let us begin by examining the phenomenon of overdispersion. 

2. WHY OVERDISPERSION OCCURS? 

Overdispersion in microbial counts arises due to several factors that violate the assump�ons of 

the Poisson distribu�on: 

 Variability in environmental condi�ons: Fluctua�ons in airflow, humidity, and cleanliness can 

cause inconsistent microbial counts, leading to greater variability than expected under a 

Poisson model. Instead, according to the Poissonian model, rare occurrences happen at a 

constant rate. 

 Non-independence of contamina�on events: A single contamina�on source can result in 

clusters of high counts, viola�ng the independence assump�on of the Poisson distribu�on. 

 Sampling variability: Differences in sample collec�on methods, sample sizes, and handling 

introduce addi�onal variability not accounted for by the Poisson model. 
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 Heterogeneous microbial distribu�on: Uneven distribu�on of microbes in controlled 

environments contributes to variability, conflic�ng with the Poisson assump�on of a constant 

average rate of occurrence. 

3. WHY OVERDISPERSION MATTERS? 

Let’s imagine two cleanrooms with the same average microbial count. If one has very variable 

counts (e.g., 0, 0, 0, 10, 2) while the other has consistent counts (e.g., 2, 3, 2, 3, 1), the first case 

shows overdispersion. Tradi�onal Poisson-based control charts may trigger false alarms in such 

cases, necessita�ng models like the Nega�ve Binomial. 

4. FEATURES OF OVERDISPERSED DATA 

As men�oned above, overdispersed data are mainly characterized by a variance which 

significantly exceeds the mean, contrary to the Poisson model where mean equals variance. 
Addi�onally, a high propor�on of zero counts, interspersed with occasional large counts, crea�ng 

a distribu�on with long tails. 

Graphically, overdispersed data may appear as a right-skewed distribu�on, highligh�ng the 
limita�ons of the Poisson model in accurately describing such data. 

The comparison shown in Figure 5 between overdispersed simulated data (Figure 5a) and Poisson-

type simulated data (Figure 5b) is illustra�ve. 

 
Figure 5a 
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Figure 5b 

 
 
The data graphically represented in Figure 5a are those collected in Table 2 below. 
 

Table 2 
Sample ID Count Sample ID Count Sample ID Count Sample ID Count Sample ID Count 

1 1 21 1 41 6 61 3 81 3 
2 2 22 3 42 3 62 2 82 2 
3 0 23 3 43 1 63 5 83 1 
4 3 24 2 44 4 64 5 84 5 
5 0 25 3 45 1 65 3 85 0 
6 1 26 2 46 1 66 1 86 3 
7 2 27 0 47 5 67 0 87 2 
8 1 28 0 48 4 68 1 88 1 
9 3 29 4 49 1 69 3 89 4 

10 4 30 1 50 1 70 1 90 1 
11 0 31 1 51 5 71 2 91 2 
12 1 32 2 52 0 72 1 92 0 
13 1 33 3 53 2 73 4 93 1 
14 5 34 2 54 0 74 1 94 1 
15 1 35 1 55 1 75 2 95 2 
16 3 36 1 56 0 76 0 96 0 
17 0 37 1 57 1 77 1 97 2 
18 1 38 0 58 0 78 2 98 2 
19 2 39 2 59 1 79 6 99 2 
20 0 40 0 60 1 80 1 100 3 

 

For the dataset in Table 2: 

• Mean = 1.8 

• Variance  = 2.3 

• Overdispersion Factor = 1.26 

• Percentage of zeros = 18% 

In this case the overdispersion factor is slightly greater than 1. 
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The simulated Overdispersed data displayed in Figure 5a, and collected in Table 2, were obtained 

using the so-called Nega�ve Binomial distribu�on, a more versa�le alterna�ve to the Poissonian 

model. 

 

5. NEGATIVE BINOMIAL DISTRIBUTION 

Nega�ve Binomial is an extension of the Poisson distribu�on that introduces an extra dispersion 

parameter, allowing the variance to be greater than the mean. 

It is used when overdispersion is present, meaning the variance of the data is significantly larger 

than the mean. 
While Poisson assumes that the variance = mean, the Nega�ve Binomial assumes:  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  =  𝜇𝜇 + 
𝜇𝜇2

𝑟𝑟  

where: 

• μ is the mean count, 
• r is the dispersion parameter (lower values indicate greater overdispersion). 

 

Nega�ve Binomial distribu�on should be used when: 

• count data exhibit overdispersion (i.e., variance > mean). 

• the excess variability arises from unobserved heterogeneity (e.g., different environmental 
condi�ons leading to fluctua�ng microbial counts). 

 
Even in this case, iden�fying the correct distribu�on to represent the experimental data is 

fundamental for choosing the most suitable control chart to monitor the process from which they 

come. 

To handle overdispersed counts it can be used: 

• Nega�ve Binomial Control Chart (NB-chart) 

• Laney u' and p'-Charts (for overdispersion adjustments). 

6. NEGATIVE BINOMIAL AND LANEY CONTROL CHARTS 

It is important to note that Nega�ve Binomial Control Charts (NB-charts) and Laney charts (u'- 
and p'-charts) are related but not the same. They are both used for overdispersed data, but they 

handle overdispersion in different ways. In par�cular: 

• Nega�ve Binomial Control Charts (NB-charts) model the data using a Nega�ve Binomial 

distribu�on 
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• Laney u' and p'-charts apply a sta�s�cal correc�on (sigma-z scaling) to adjust control limits. 

So, even if Nega�ve Binomial control chart is not a Laney chart, they are both used to address 

overdispersion as summarized in Table 3 below: 

 
Table 3 

Feature Nega�ve Binomial Control Chart 
(NB-chart) Laney u' & p'-Charts 

Distribu�on 
Used 

Nega�ve Binomial 
(variance > mean) 

Poisson or Binomial 
(adjusted for overdispersion) 

How It Works Uses a Nega�ve Binomial model with 
an extra dispersion parameter (r) 

Applies a sigma-z correc�on to 
adjust control limits 

Best For 
Data with excess variance due to 

clustering of events  
(e.g., microbial counts) 

Slight to moderate 
overdispersion in Poisson or 

Binomial data 

Advantages More flexible, models high variability 
accurately 

Easy to implement in exis�ng 
Poisson/Binomial charts 

Limita�ons Requires es�ma�ng an extra 
dispersion parameter (r) 

May not fully correct extreme 
overdispersion 

 

As is once again evident, it is essen�al, first, to establish how the data is distributed. 
To sum it all up in a few words: 

• if the variance is only slightly greater than the mean, use Laney charts. 

• if the variance is significantly greater than the mean, use a Nega�ve Binomial Control Chart. 
 

Both Laney uʹ-charts and pʹ-charts adjust for overdispersion, but they are used for different 

types of data. In par�cular: 

Table 4 
Chart Type Used For Formula Adjusted 

Laney uʹ-Chart Rates  
(per unit defects or microbial counts per sample) σʹ=σ×Z (sigma-z correc�on) 

Laney pʹ-Chart Propor�ons 
(defec�ves per batch, pass/fail data) σʹ=σ×Z (sigma-z correc�on) 

 
The key differences between these two types of control charts are as follows: 

• u′-chart → Used for count-based data, like microbial counts per sample. 

• p′-chart → Used for proportions, like % of samples exceeding a microbial limit. 
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The formula for Overdispersion Correction or Laney’s Z-Score Adjustment, is: 

𝜎𝜎′  =  𝜎𝜎 × 𝑍𝑍 

where Z is a correction factor that adjusts for excess variance. 

Everything we have seen so far is summarized in the summary Table 4 below. 

 

Table 5 
Scenario Best Control Chart 
Poisson-distributed microbial counts Tradi�onal c-chart 
Poisson-distributed defect rates (per unit) u-chart 
Binomial-distributed defect propor�ons p-chart 
Overdispersed Poisson or Binomial data 
(mild/moderate overdispersion) Laney uʹ or pʹ- charts 

Highly overdispersed data  
(Variance >> Mean) Nega�ve Binomial Control Chart (NB-chart) 

 

In light of the above, the data in Table 2 showing mild/moderate overdispersion (the 

overdispersion factor is in fact slightly higher than 1) can therefore be treated equally well using 
both Nega�ve Binomial and Laney u’-control charts (see Figures 6 and 7). 

 

 
Figure 6 
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 Figure 7 

 
 
Let us now consider, as an example, a series of simulated data characterized by high 

overdispersion such as those reported in Table 6 below. 

 
Table 6 

Sample ID Count Sample ID Count Sample ID Count Sample ID Count Sample ID Count 

1 4 21 0 41 0 61 0 81 1 
2 1 22 0 42 4 62 2 82 1 
3 0 23 1 43 2 63 0 83 2 
4 1 24 2 44 6 64 2 84 0 
5 1 25 4 45 2 65 1 85 1 
6 0 26 5 46 2 66 3 86 0 
7 2 27 8 47 2 67 7 87 0 
8 7 28 1 48 1 68 0 88 0 
9 0 29 6 49 1 69 0 89 1 

10 0 30 0 50 2 70 0 90 2 
11 1 31 3 51 2 71 0 91 2 
12 1 32 0 52 3 72 4 92 0 
13 1 33 2 53 3 73 0 93 1 
14 0 34 0 54 0 74 0 94 2 
15 1 35 2 55 3 75 0 95 0 
16 2 36 0 56 11 76 0 96 0 
17 0 37 2 57 6 77 1 97 0 
18 3 38 12 58 2 78 4 98 1 
19 2 39 0 59 4 79 2 99 2 
20 3 40 0 60 2 80 0 100 3 
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For the dataset in Table 6: 

• Mean = 1.8 

• Variance  = 5.2 

• Overdispersion Factor = 2.85 

• Percentage of zeros = 35% 

 

The overdispersion factor is now significantly greater than 1. 

In this case, the data show a much more pronounced right-skewed distribu�on than that shown 

by the data in Table 2 and visualized in Figure 5a. 

 

Figure 8 

 
 

 
As can be seen from the control charts shown below in Figures 9 and 10, in the case of highly 

overdispersed data, the choice of the correct reference distribu�on makes the difference for the 

purposes of correct monitoring of the process which, otherwise, would be full of alarms. 

In Figure 9 (Laney u'-chart) we observe at least five data points that exceed or are at the level of 

the Upper Control Limit (UCL) while in Figure 10 (Nega�ve Binomial control chart) this number is 

reduced to three. 
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 Figure 9 

 
 
 
Figure 10 

 
 

While Nega�ve Binomial distribu�on handles high overdispersion as in the case of Table 6 data, 

it does not explicitly model excess zeros. If data have more zeros than expected, a Zero-Inflated 

Model (ZIM) might be beter. 
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7. ZERO-INFLATED MODELS (ZIMS) 

Real-world microbial data o�en show greater variability than that observed un�l now. 

In fact, in controlled environments such as cleanrooms, microbial counts o�en include excess 

zeros. These zeros may arise from two different processes: 

• true structural zeros (no contamina�on possible in certain condi�ons) 

• random zeros (low but nonzero microbial presence) 

In this case, the Zero-Inflated Poisson (ZIP) and Zero-Inflated Nega�ve Binomial (ZINB) models 

account for these two sources of zeros by combining a zero-genera�ng process with either a 

Poisson or Nega�ve Binomial count process. 

In prac�ce a Zero-Inflated Model consists of: 

• a binary process that decides if the observa�on is in the "always zero" group. 

• a count process (Poisson or Nega�ve Binomial) for cases where counts occur. 

Mathema�cally, the probability mass func�on (PMF) is: 

 

  = 𝑝𝑝 + (1 − 𝑝𝑝) 𝑓𝑓(0, 𝜃𝜃)       𝑖𝑖𝑖𝑖 𝑦𝑦 = 0 
 𝑃𝑃(𝑌𝑌 = 𝑦𝑦) 
 =  (1− 𝑝𝑝) 𝑓𝑓(𝑦𝑦, 𝜃𝜃)              𝑖𝑖𝑖𝑖 𝑦𝑦 > 0   

where: 

• p is the probability of being in the structural zero state, 

• f(y, θ) is the Poisson or Negative Binomial probability mass function. 

There are basically two types of Zero-Inflated Models: 

• Zero-Inflated Poisson (ZIP): when the count data follows a Poisson distribu�on. 

• Zero-Inflated Nega�ve Binomial (ZINB): when the count data is overdispersed and follows a 

Nega�ve Binomial distribu�on. 

They should be used when: 

• there are more zeros than a standard Poisson or Nega�ve Binomial model would predict. 

• the data suggest two sources of zeros (e.g., some loca�ons always have no microbes, while 
others follow a count distribu�on). 

 
In short, the main differences between Nega�ve Binomial and Zero-Inflated Models can be 

summarized as shown in Table 7 below: 
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Table 7 
Feature Nega�ve Binomial (NB) Zero-Inflated Models (ZIP/ZINB) 

Handles Overdispersion? Yes Yes (ZINB) 

Handles Excess Zeros? No Yes 

Uses Two Processes? No Yes (binary + count) 

Best When? Overdispersion is the main issue There are excess zeros from two sources 

 

In summary we should therefore use: 

• Nega�ve Binomial (NB) if variance > mean but zeros follow the expected patern. 

• Zero-Inflated Poisson (ZIP) if there are more zeros than expected. 

• Zero-Inflated Nega�ve Binomial (ZINB) if there are both excess zeros and overdispersion. 

To simplify and clarify beter, let's now look at two explanatory examples. 

8. EXAMPLE 1 

Table 8 below summarizes a series of simulated microbial count data characterized by excess 

zeros, that is, the percentage of zeros rela�ve to the total observa�ons is greater than 30%. 
This, in general, is a good sign of zero infla�on. 

 

Table 8 
Sample ID Count Sample ID Count Sample ID Count Sample ID Count Sample ID Count 

1 0 21 0 41 0 61 2 81 0 
2 0 22 0 42 0 62 3 82 2 
3 2 23 0 43 1 63 0 83 1 
4 0 24 0 44 2 64 1 84 3 
5 4 25 0 45 2 65 0 85 0 
6 2 26 3 46 1 66 2 86 0 
7 0 27 1 47 0 67 0 87 0 
8 1 28 0 48 1 68 2 88 0 
9 2 29 2 49 3 69 3 89 0 

10 6 30 3 50 0 70 2 90 2 
11 0 31 0 51 2 71 0 91 0 
12 0 32 2 52 3 72 0 92 3 
13 0 33 0 53 0 73 0 93 1 
14 1 34 0 54 1 74 1 94 2 
15 3 35 2 55 0 75 0 95 0 
16 2 36 0 56 1 76 4 96 0 
17 7 37 0 57 1 77 0 97 0 
18 3 38 3 58 2 78 0 98 0 
19 0 39 0 59 0 79 0 99 0 
20 2 40 0 60 0 80 1 100 0 
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For the dataset in Table 8:  

• Mean = 1.1 

• Variance  = 2.0 

• Overdispersion Factor = 1.85 

• Percentage of zeros = 52% 

In this case the overdispersion factor is certainly greater than 1 ( overdispersion), but the 

dominant feature of the dataset is the percentage of zeros present which is equal to 52% ( zero 

infla�on). 

Again, the data show a pronounced right-skewed distribu�on as in Figure 8 but, unlike Figure 8, 

here the zero frequency dominates the histogram. 

 

Figure 11 

 
 

Since a comparison based on Akaike Informa�on Criterion (AIC) of which of the two models ZIP 

or ZINB was more suitable for the data in Table 8 did not reveal any significant differences, I 

decided to use ZIP (Zero-Inflated Poisson) as it is simpler. Based on this, the control limits were 

calculated for the chart shown in Figure 12 as follows: 

𝑈𝑈𝑈𝑈𝑈𝑈 =  𝜆𝜆 + 3�𝜆𝜆 (1− 𝑝𝑝) 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, 𝜆𝜆 −  3�𝜆𝜆 (1− 𝑝𝑝)� 

where: 

λ = Poisson mean 

p = Zero-Infla�on probability. 
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Figure 12 

 
 

Apart from the differences in the mean and UCL values, the Laney u'-control chart in Figure 13 is 

quite similar to the one obtained using ZIP. 

 Figure 13 

 
 

Conversely, as shown in Figure 14, using a simple u-control chart would have instead led to a 

lower UCL and thus increased the possibility of alarms. 
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 Figure 14 

 
 

9. EXAMPLE 2 

In Table 9 below, a second set of simulated microbial count data is collected, characterized by an 

excess of zero values, that is the percentage of zeros with respect to the total observa�ons is 

greater than 30%. This, in general, is a good sign of zero infla�on. 

 
Table 9 
Sample ID Count Sample ID Count Sample ID Count Sample ID Count Sample ID Count 

1 0 21 2 41 0 61 3 81 0 
2 0 22 6 42 0 62 2 82 0 
3 0 23 3 43 0 63 0 83 1 
4 1 24 0 44 0 64 2 84 0 
5 5 25 2 45 1 65 1 85 1 
6 3 26 0 46 0 66 3 86 0 
7 2 27 1 47 0 67 1 87 0 
8 0 28 6 48 0 68 2 88 0 
9 4 29 4 49 3 69 1 89 5 

10 0 30 0 50 0 70 0 90 3 
11 0 31 0 51 3 71 8 91 4 
12 0 32 0 52 1 72 1 92 0 
13 0 33 1 53 0 73 0 93 0 
14 1 34 0 54 2 74 0 94 4 
15 0 35 2 55 4 75 0 95 0 
16 0 36 0 56 1 76 0 96 0 
17 0 37 4 57 0 77 0 97 0 
18 0 38 3 58 0 78 0 98 5 
19 0 39 3 59 4 79 0 99 0 
20 1 40 0 60 0 80 4 100 1 
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For the dataset in Table 9:  

• Mean = 1.3 

• Variance  = 3.1 

• Overdispersion Factor = 2.51 

• Percentage of zeros = 54% 

In this case the percentage of zeros in the dataset is comparable to that of Example 1 (54% vs. 

52%) while the overdispersion factor is significantly higher (2.51 vs. 1.85). 

The appearance of the data (see Figure 15 below) shows a markedly right-skewed distribu�on 

with zero frequency domina�ng the histogram. 

 

Figure 15 

 
 
A comparison based on Akaike Informa�on Criterion (AIC) and Overdispersion factor has shown 

that ZINB model was more suitable for the data in Table 9. Based on this, the control limits were 

calculated for the chart shown in Figure 16 as follows: 

 

𝑈𝑈𝑈𝑈𝑈𝑈 =  𝜆𝜆 + 3 × �𝜆𝜆 (1 − 𝑝𝑝) + 
𝜆𝜆2

𝜃𝜃  

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝜆𝜆 −  3 × �𝜆𝜆 (1 − 𝑝𝑝) + 
𝜆𝜆2

𝜃𝜃 � 
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where: 

λ  = Es�mated mean count (fited by ZINB model) 

p  = Zero-infla�on probability (excess zeros adjustment) 

θ  = Dispersion parameter (controls overdispersion in NB) 

�𝜆𝜆 (1 − 𝑝𝑝) +  𝜆𝜆
2

𝜃𝜃
  =  Standard devia�on, considering overdispersion and zero-infla�on 

 
3 × = Mul�plies by 3 standard devia�ons to set control limits 
 
max(0, LCL) = Ensures LCL is not nega�ve 
 
 
Figure 16 

 
 

In this case, unlike Example 1 where the Overdispersion Factor was less different from 1, the Laney 

u' control chart in Figure 17 looks quite different from the one obtained by ZINB. 
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 Figure 17 

 
 
If only a simple u-control chart had been used, the resul�ng situa�on would have been even 

worse as clearly highlighted in Figure 18. 

 Figure 18 
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10. CONCLUSIONS: AVOIDING FALSE ALARMS WITH THE RIGHT MODEL 

Selec�ng the correct sta�s�cal model for microbial count data is cri�cal in pharmaceu�cal and 

controlled environments. While the Poisson distribu�on is founda�onal, it o�en does not 

adequately describe real-world data due to overdispersion or excess zeros. 

This study highlights that: 

• When variance is significantly greater than the mean, Nega�ve Binomial models provide a 

beter fit than Poisson. 

• When excess zeros are present, Zero-Inflated Models (ZIP, ZINB) are o�en necessary to avoid 

false alarms in control charts. 

• Control charts must be adapted to the data distribu�on to prevent incorrect process 

monitoring decisions. 

If the data distribu�on is misiden�fied, tradi�onal control charts may lead to frequent 

unnecessary interven�ons (false alarms) or failure to detect real process devia�ons. There is 

no “one-size-fits-all” solu�on—choosing the right sta�s�cal model is essen�al for ensuring 
reliable monitoring and decision-making. 

Furthermore, an improper selec�on of control charts results in incorrect control limits, which not 

only affect current process monitoring but also have long-term consequences. These control 

limits are o�en used in Con�nued Process Verifica�on (CPV), meaning that an ini�al 
misclassifica�on of data distribu�on could lead to inadequate long-term process control 

strategies. Overly �ght limits may cause excessive false alarms, while excessively wide limits 

could fail to detect real devia�ons in microbial trends. 

Crucially, microbial count data are discrete by nature, meaning they require sta�s�cal models 

that appropriately reflect their proper�es. Misapplying con�nuous-variable models to discrete 

count data can result in misleading control limits and incorrect process evalua�ons. Recognizing 

this fundamental characteris�c is essen�al for both short-term monitoring and long-term 

process verifica�on. 

By integra�ng data analysis tools, prac��oners can perform goodness-of-fit tests, assess 

overdispersion, and select the most appropriate control chart, ensuring that microbial 

monitoring remains both sensi�ve and reliable not only today but also in the long-term context 

of process valida�on and Con�nued Process Verifica�on. 
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